API Design
Guidelines

Mike Kistler & Dan Hudlow
IBM Cloud Developer Experience

Why you need API Design Guidelines

» Consistency in your API design
* will benefit your users

* will benefit your service/library/tool developers

Guiding Principles

» Usefulness

* Adherence to HTTP semantics

* Ease of use and low barrier to entry
* Defensiveness/Compatibility

» Security

* Longevity

References

 Microsoft API Guidelines
* Google API Guidelines

* API Stylebook

https://github.com/microsoft/api-guidelines/blob/vNext/Guidelines.md
https://cloud.google.com/apis/design/
http://apistylebook.com/design/guidelines/

Design First

e User stories
e ERDs
 and UML

Specitication Format

* OpenAPI

or

» Linux Foundation project (Open)

» Specifically OpenAPI v3.x
» published July 2017

http://spec.openapis.org/oas/v3.0.2
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md

Resource-oriented API design

* API consists of nouns — resources — and verbs — operations

* Final static segment in API path Is the resource name

* Always plural

* Resource instances have a unique ID

 Resource has a well defined schema of its contents

Example Resource

/authors/18345

?
“1d"”: 18345,
“first name”: "“Scott”,
“last_name”: “Thompson”,

“city”: "Dallas”,

“region”: "“Texas”,

“country”: “United States”,

“tags”: [“Objective-C", “Swift”, “Ruby”],
“href”: "https://api.hudlow.org/authors/18345"

Resource Format

« JSON
 JSON Is unordered

* JSON names are case-sensitive

* But not any JSON

* Use well-defined types
* Don’t mix types within an array
* Beware of "null"

* Create clear guidelines about what is/is not allowed

Naming Conventions

* snake case
 camelCase
* UpperCamelCase

e Kebab-case

10

Naming Conventions

* snake case

* Qur choice for parameter and property names

e camelCase

* Qur choice for operation 1ids

* UpperCamelCase

* Qur choilce for schema names

e kebab-case

11

Operations

Create

12

Create with POST Update with PATCH

| |
CRUD
Read with GET ‘ | Delete with DELETE

Create and Update with POST

\ \
CRUD
\ \

Read with GET Delete with DELETE

HTTP Methods

GET & HEAD

» Safe
» Jdempotent

» Ignore request bodies

16

POST

* Unsate
* Non-idempotent
* Used tor creation of subordinate resources:
POST /books - /books/38573
* May also be used for modifying an existing resource:

POST /books/38573

17

PATCH

* Unsafe
* Non-idempotent

* Modify an existing resource

138

* Unsafe
» Jdempotent

» Used for creating or replacing a resource at a known URL

Standard Error Model

400 Bad Request

?
“code”: “missing field”,
“message”: “The first_name field is needed to create an author.”,
“target”: 3
“type"”: "field"”,
“name”: “first name”
§

20

Programmatic Intormation in Errors

400 Bad Request

“code”: “missing_field”,
“message”: “The first_name field is needed to create an author.”,
“target”: {

“type”: “field”,

“name”: “first_name”

£

21

Collections

GET /authozrs

t
“authors”: [
t
“1d": 18345,
“"first name”: “Scott”,
“last _name”: “Thompson”,
“"href”: "https://api.hudlow.org/authors/18345"
[
1
“1d": 63840,
“"first name”: “David”,
“last_name”: “Gelphman”,
“"href”: "https://api.hudlow.org/authors/63840"
£
]
§

22

Oftset & Limit Pagination

GET /authors?offset=4&limit=2

“total _count”: 12
“"authors”: [

1

“1d": 18345,

“"first name”: “Scott”,

“last_name”: “Thompson”,

“"href”: "https://api.hudlow.org/authors/18345"
[
1

“1d": 63840,

“"first name”: “David”,

“last_name”: "“Gelphman”,

“"href”: "https://api.hudlow.org/authors/63840"
§

23

Token-based Pagination

GET /authozrs

“total count”: 12
“next”: {

“token”: "“d537748fe4"”

£/
“authors”: [
1
“id": 18345,
“first name”: “Scott”,
“last_name”: “Thompson”,
“"href”: “https://api.hudlow.org/authors/18345"
[
1
“1d": 63840,
“"first name”: “David”,
“last_name”: “Gelphman”,
“"href”: “https://api.hudlow.org/authors/63840"
§
]
§

24

Pagination

» Offset and limit pagination
 Stateless
* Imprecise
* Token-based pagination
* Robust
* More difficult and demanding to implement

e Stateful vs stateless considerations

25

Versioning

26

* Usually compatible

* Adding new fields to models

* Adding new types of resources at new URLs
* Usually incompatible

* Removing resource types

* Removing fields from resources

» Adding new required fields to templates

* Making previously valid field values invalid

Specifying Versions

* Custom header
API-Version: 3
* Query parameter
/books?apl_version=3
* Content type
Accept: application/vnd.github.v3+json
* Root path
/v3/books

28

* Define your principles and priorities
* Create purposetul guidelines
* Write them down

 Start designing better web APIs

